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Abstract

Human immunodeficiency virus (HIV) pre-exposure prophylaxis (PrEP) protects high risk patients 

from becoming infected with HIV. Clinicians need help to identify candidates for PrEP based on 

information routinely collected in electronic health records (EHRs). The greatest statistical 

challenge in developing a risk prediction model is that acquisition is extremely rare.

Methods: Data consisted of 180 covariates (demographic, diagnoses, treatments, prescriptions) 

extracted from records on 399 385 patient (150 cases) seen at Atrius Health (2007–2015), a 

clinical network in Massachusetts. Super learner is an ensemble machine learning algorithm that 

uses k-fold cross validation to evaluate and combine predictions from a collection of algorithms. 

We trained 42 variants of sophisticated algorithms, using different sampling schemes that more 

evenly balanced the ratio of cases to controls. We compared super learner’s cross validated area 

under the receiver operating curve (cv-AUC) with that of each individual algorithm.

Results: The least absolute shrinkage and selection operator (lasso) using a 1:20 class ratio 

outperformed the super learner (cv-AUC = 0.86 vs 0.84). A traditional logistic regression model 

restricted to 23 clinician-selected main terms was slightly inferior (cv-AUC = 0.81).
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Conclusion: Machine learning was successful at developing a model to predict 1-year risk of 

acquiring HIV based on a physician-curated set of predictors extracted from EHRs.
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1 | INTRODUCTION

Pre-exposure prophylaxis (PrEP) has been shown to dramatically decrease the risk of 

becoming infected with Human immunodeficiency virus (HIV) in adherent high risk 

populations.1,2 Automated identification of high risk patients could promote health and 

reduce the spread of HIV. A risk prediction model based on information routinely captured 

in an electronic health record (EHR) could help physicians offer PrEP to patients most likely 

to benefit from treatment. One challenge is that HIV acquisition is extremely rare. A second 

challenge is that although covariates in EHR data are readily available, they are imperfect 

proxies for behavioral patterns indicative of exposure to the virus.3 CDC criteria for PrEP 

prescribing rely on behavioral characters such as receptive anal intercourse or number of 
shared needles that are not routinely captured in the EHR.4 Existing HIV risk prediction 

models also include such covariates and may be developed within a restricted high risk 

population of men who have sex with men..5–7 In contrast, our goal was to understand 

whether routinely collected EHR data could help identify high risk candidates for PrEP 

within a general population in the United States.

Our data contained information on patients seen between 2007 and 2015 at Atrius Health, a 

clinical network serving eastern Massachusetts. Among approximately 1.2 million Atrius 

patients, 150 were newly diagnosed with an incident HIV infection. Observations on each 

patient consisted of demographic information, diagnosis codes, procedure codes, drug 

prescriptions, laboratory tests, and results. For clinical aspects of this work and details on the 

data source, we refer the interested reader to a companion paper in the medical literature.3 In 

this article, we describe our methodologic approach to risk prediction that harnesses both 

clinical expertise and the tools of machine learning.

We were interested in predicting 1-year risk of acquiring HIV, that is, the conditional 

probability of being newly diagnosed as HIV positive within the next calendar year 

conditional on the patient’s medical history. We define this as E(Y (t + 1) ∣ X(t)), the patient-

level conditional mean outcome at time t + 1 given covariate history measured through time 

t, X(t).

An important question is how to best capture salient elements of X(t) while simultaneously 

building a model that can be successfully applied across a broad variety of settings. Since a 

patient’s true risk of acquiring HIV will rise and fall with changes in behaviors that affect 

exposure to the virus, more recent values of some covariates may supplant values measured 

long ago. Another advantage of limiting the length of the look back period is that fewer 

patients will be excluded from our dataset due to inadequate medical history. Finally, we aim 

to create a tool that can be applied to as broad a patient population as possible, rather than 
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the small subset of patients with lengthy historical EHR data. A disadvantage to limiting the 

length of the look-back period is the potential for ignoring important predictors of risk. In 

fact, the length of time covered by the EHR might itself be predictive of risk.

For these reasons, we define a prediction model that conditions on baseline characteristics 

X(0), information accrued over two calendar years X(t) = (X(t), X(t − 1)), and summary 

measures of more distant history, Z(t). For example, Z(t) = f(X(t)) could include the mean 

number of annual gonorrhea tests, a binary indicator of ever having had an HIV test, a 

binary indicator of ever having a positive syphilis test, and so on. Thus, Z(t) = f(X(t))
summarizes the recorded medical history for each patient over the patient-specific time 

period for which data are available. Our target parameter is given by E(Y (t + 1) ∣ X(t)), with 

X(t) ≡ (X(0), X(t), Z(t)). Predictors in our model accurately reflect information recorded in 

the EHR, not necessarily the true patient history. This does not pose a problem, since 

recorded information is what will be used to calculate risk when the model is applied in 

practice.

A traditional approach to risk prediction modeling relies on clinical expertise to identify 

important predictors, and fitting a logistic regression model to the data. When the outcome is 

rare relative to the number of available predictors, as it is here, a forward or backward 

stepwise selection procedure might be used to create a parsimonious model. Instead of 

relying on a single parametric model specification, a machine learning algorithm adapts to 

information in the data. Different machine learning algorithms make different use of this 

information. A practitioner has little way of knowing which approach will work best on any 

given dataset.

For this reason, we relied on super learning (SL) to predict one year risk of acquiring HIV. 

SL is an ensemble machine learning algorithm that develops a risk prediction model for each 

algorithm in a user-specified library, and evaluates the cross validated loss for each one.8,9 

The minimizer of the cross validated loss is the algorithm that produced the best prediction 

model. However, ensemble SL may possibly improve upon this model by combining 

predictions from multiple models. SL predictions are calculated as an asymptotically 

optimal weighted combination of predictions from the individual algorithms. SL has been 

applied to risk score prediction in several health care settings, including intensive care unit 

mortality and identifying high risk candidates for PrEP in Uganda and Kenya.10–14

Cross validation provides an honest assessment of the relative performance of prediction 

algorithms. Although SL is asymptotically optimal, in finite samples, it is not guaranteed to 

out-perform each individual learner in the library.15 For this reason, we compared SL’s cross 

validated area under the receiver operating curve (AUC), with that of each of the individual 

algorithms in the library. This allowed us to evaluate whether the SL model is better at 

discriminating between cases and non-cases than each of the others. If it is not, we are better 

off choosing the model that is the best. In the SL literature, this process of using cross 

validation to identify the single best performer is known as discrete super learning (dSL).

While dSL allows us to choose the model that minimizes the cross validated loss (1-AUC), 

we also want to consider the trade-offs between using an ensemble SL model versus a 
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simpler, more interpretable model. Keep in mind that our ultimate goal is to focus health 

care providers’ attention on likely candidates for PrEP. All else being equal, we favor a 

model that is parsimonious, interpretable, and acceptable to clinicians. For example, lasso 

performs its own internal covariate selection to reduce dimensionality and produce a familiar 

logistic regression model. The lasso model is transparent, easy to communicate, and easy to 

update. Implementing the lasso model in practice would require extracting and processing 

information only for the small number of covariates retained in the model, rather than all 

covariates originally considered by SL. This would make it an attractive option, particularly 

when SL’s performance is not appreciably different. On the other hand, if the SL model is 

vastly superior, its enhanced ability to identify appropriate PrEP candidates could offset the 

lack of transparency.

2 | STATISTICAL METHODS

2.1 | Super learner

The machine learning literature teaches that an alternative to relying on a single parametric 

model is to combine predictions from multiple models,16–18 or more generally from multiple 

predictive algorithms.19,20 SL is an example of the latter. The analyst assembles a collection 

of prediction algorithms known as a library, and uses SL to estimate either a class label 

(classification task, eg, case or control), or conditional mean outcome (regression task). 

Ensemble SL predictions are a convex combination of the predictions from each algorithm 

in the library. In contrast, dSL predictions equal those produced by the single best 

performing algorithm in the library.

Discrete SL converges to the true data model, or true conditional distribution of the data, 

when the library algorithms search over the portion of the solution space that contains the 

model. Otherwise, SL will converge to the minimizer of the cross validated loss, ℒ(O).8 

Common loss functions include the negative log likelihood, negative sum of squared 

residuals, and 1-AUC. SL’s reliance on K-fold cross validation confers proven asymptotic 

oracle properties.15 At large enough sample size, the distribution of SL risk predictions will 

approximate the true distribution as closely as possible, given the candidates specified in the 

library. For example, if the SL library contains only misspecified logistic regression models, 

dSL will select the one that best fits the data, even though it is incorrect.

Ensemble SL extends dSL by calculating an optimal weighted combination of predictions 

from the algorithms under consideration.9 The intent is to stabilize estimates. However, in 

finite samples, there is no theoretical guarantee that ensemble SL will out-perform discrete 

SL, or that it will not overfit the data. For this reason, we evaluated the cross-validated loss 

of the ensemble SL itself. This allowed us to compare its finite sample performance with 

that of each of the candidate algorithms in our SL library.

In practice, the key to success with SL is defining an appropriate library of candidate 

algorithms. In high-dimensional data, the collection of probability distributions under 

consideration, or solution space, is too large to do an exhaustive search. Note that when we 

consider the number of potential interaction terms and transforms of the covariates, even 

moderately sized data are, in fact, high dimensional. The SL library specification constrains 
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the solution space. A rich library might contain parametric, nonparametric, and 

semiparametric algorithms, some of which model the covariate-outcome relationships, and 

others that avoid directly modeling the outcome distribution. Searching over the solution 

space in different ways robustifies SL performance.21

Other considerations when defining the SL library include characteristics of the outcome 

(eg, binary, ordinal, continuous, rare), the number of potential covariates, the number of 

observations, and the opportunity to incorporate data-adaptive and/or knowledge-based 

dimension reduction. Theoretical results hold for an SL library allowed to grow 

polynomially with sample size, so a large library is encouraged. In practice, computation 

time and resource availability limit the size of the SL library to one that is feasible.

2.2 | Library algorithms

To better understand performance of individual machine learning algorithms under 

consideration for inclusion in our SL library, we applied them to simulated data. The goal 

was to gain insight into method performance in a dataset with a rare outcome under different 

undersampling schemes. For each algorithm in the SL library, we wanted to better 

understand sensitivity to changes in the setting for the tuning parameters. We established a 

plausible set of values for each sensitive tuning parameter, and provided them to machine 

learning algorithms that perform their own internal cross-validation to choose the best tuning 

parameter value within a user-specified range. Otherwise, we included multiple variants of 

the algorithm in our SL library. We also paid attention to how convergence and computation 

time, and goodness of fit varied at different ratios of cases to controls.

Data were simulated so that the event rate matched the rate in the Atrius population who had 

at least one HIV-related flag in the EHR (see Section 3). We simulated a binary outcome that 

followed the logistic distribution. Eighteen correlated binary covariates, X1, … X18 were 

generated, and then model coefficients β1, … β18 were fixed at values between 0.01 and 1, 

mimicking mild associations with the outcome similar to those observed in the real data. The 

intercept was set to β0 = −10 to yield a marginal event proportion on the order of that 

observed in the Atrius data. Y was generated as a Bernoulli random variable with probability 

equal to expit(Xβ), where X is the design matrix containing the intercept and covariates X1, 

… X18. We evaluated a variety of algorithms using R version 3.3.1,22 assessing the cv-AUC, 

sensitivity to tuning parameters, computation time, and changes in performance under 

different ratios of incident HIV cases to controls, ranging from 1:100 to 1:10. Based on this 

informal assessment, we decided to incorporate variants of the following five types of 

candidate algorithms in the SL library used to build our risk score model.

2.2.1 | Logistic regression-based algorithms—The R glm function provides 

maximum likelihood estimation of parameters of a pre-specified logistic regression model. 

We also used the step function to data-adaptively select first and second order terms using a 

stepwise backward selection procedure based on the Akaike Information Criterion (AIC). 

We incorporated weights into each approach, where cases received a weight of 1 and 

controls received a weight that was inversely proportional to the conditional probability of 

being sampled.

Gruber et al. Page 5

Stat Med. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2.2 | Regularized regression algorithms—Elastic net estimators are regularized 

regression algorithms that shrink coefficients in a regression model towards zero. The 

glmnet package provides a family of elastic net estimators of the form,

β = argminβ y − Xβ 2 + (1 − α) β 2 + α β 1 ,

where β 1 = ∑j = 1
p βj , and p is the number of terms in the model.23 Setting α = 0 

corresponds to penalizing by the L2 norm (ridge), while setting α = 1 corresponds to 

penalizing by the L1 norm (lasso). The ridge penalty drives coefficient values toward 0, 

while the lasso penalty allows some coefficients to actually reach 0, effectively excluding 

some covariates from the model data-adaptively.24 We included lasso and ridge regression in 

the SL library for developing our HIV acquisition prediction model.

2.2.3 | Neural networks—Neural networks are machine learning algorithms that 

(typically) model the regression function as a weighted sum of sigmoid curves.25 The class 

of feed forward neural nets implemented in the nnet package has an input layer, a single 

hidden layer, and an output layer. There are weighted directed edges from nodes in the input 

layer to nodes in the hidden layer, and from nodes in the hidden layer to nodes in the output 

layer. The nnet package also allows skip-layer connections directly from input nodes to 

output nodes. This flexibility allows the neural network to approximate complex non-linear 

functions. Initial weights on the directed edges are updated to minimize an optionally 

penalized loss function (ie, least squares), where the penalty on the sum of squares of the 

weights is known as weight decay.25

2.2.4 | Random forests—Random forests are collections of classification and 

regression trees that nonparametrically classify observations by reporting the mode of the 

classifications of the individual trees. Predicted probabilities are the mean of the class 

predictions across all trees.26 A single tree is created by iteratively dividing the data at each 

node in the tree in a way that maximally separates the classes. For binary outcomes, these 

splits are based on the covariate that best discriminates between cases and controls. The 

splitting process continues until all observations in the node are in the same class, or a 

specified minimum node size is reached. As implemented in the randomForest package, only 

a randomly sampled subset of covariates are considered at each node.27 Tree-building 

inherently models higher order interactions and is not affected by monotone (rank 

preserving) transforms of the data. Although a single tree can be unstable in the face of 

small perturbations in the data, random forest overcomes this limitation by aggregating over 

hundreds or thousands of trees in a forest.26

2.2.5 | Support vector machines—Support vector machines (SVM) avoid directly 

modeling the outcome regression. Instead, an SVM identifies vectors in a multidimensional 

space that maximally separate cases from controls.28,29 Support vectors are the data points 

that lie closest to the class boundaries. SVMs try to maximize the minimum distance 

between these vectors, which leads to identifying the minimum number of support vectors. 
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Soft margins optionally allow solutions to include some misclassification of labeled 

observations in the training set.28

An equivalence between linear SVMs and lasso solutions has recently been proven.30 

Nonlinear transforms of the data through kernel functions allows SVMs to succeed even 

when classes are not linearly separable. For example, nonlinear SVMs can discover neural 

network solutions using a sigmoid kernel function.29 The SVMs in our super learner library 

used a sigmoid kernel.

2.3 | Rescaling predicted risk scores

A notable feature of our data was that the outcome is extremely rare, occurring in 

approximately 13 out of 100 000 patients. Algorithms that aim to minimize the proportion of 

misclassified observations when predicting class probabilities (case or noncase) are difficult 

to train when there are large imbalances in the outcome classes.31,32 Improving the balance 

by undersampling the more prevalent outcome class can improve the discriminatory 

performance of the classifier. Artificially adjusting the class proportions is a form of biased 

sampling. Some algorithms, such as classic logistic regression, can incorporate weights 

equal to the inverse of the conditional probability of being sampled into the estimation 

procedure to accurately scale predicted probabilities. For algorithms that cannot incorporate 

weights, the predicted probabilities need to be rescaled to account for the biased sampling of 

cases and controls. Rescaling can be accomplished via the prior correction method.33 This 

simple calculation corrects the intercept in a logistic regression model to account for the 

actual proportion of cases in the data, rather than the under-sampled proportion. Predicted 

probabilities,Ŷ, are adjusted to reflect the background prevalence of the outcome, instead of 

the prevalence in the sampled data. The rescaled predicted probabilities,Ŷ′, are given by,

Y ′ = expit [logit(Y ) − logit(π) + logit(τ)],

where π is the proportion of cases in the undersampled data and τ is the proportion of cases 

in the source population.

3 | DATA ANALYSIS

3.1 | Data

We had access to EHR data on 399 385 of the 1.2 million patients seen during 2007 to 2015 

at Atrius Health. These patients had at least one of 180 clinician-specified risk factors for 

HIV acquisition and/or were diagnosed with incident HIV. Data on an additional n = 755 

579 patients who had 0 recorded risk factors were not available to us (details were 

previously published3). A patient with at least one risk factor contributed one observation to 

our dataset for each year there was an encounter with the health care system, for a total of 

2.3 million observations. Because the outcome was observed in only 150 observations we 

decided to create an analytic dataset that included all cases, but undersampled the available 

controls.

Gruber et al. Page 7

Stat Med. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A rule of thumb in a typical case-control study is to sample five controls per case (see ch. 6 

of Reference34). We did not want to assume that this low sampling ratio would work equally 

well for the task of predicting an extremely rare outcome. For example, it is not clear that the 

distribution of covariates in a subset of only 5 × 150 = 750 controls would faithfully 

represent the distribution in the entire class. We opted to select 50 controls per case to 

ameliorate this problem, while preserving the option to further undersample controls when 

fitting each algorithm in the SL library.

There were 30 female and 120 male cases. Although 80% of cases were male, available 

controls were predominantly female (62%).To achieve an overall ratio of 1:50 cases to 

controls, matched on sex, we generated binary inclusion indicators for each control using 

simple random sampling, stratified by sex. For males, P(Include = 1 male control) = 6000 / 

842 332 (the total number of available controls), ≈ 0.71%. For females, P(Include = 1 

female control)| = 1500 / 1 366 663 (the total number of available females), ≈ 0.11%. The 

analytic dataset consisted of n = 7616 observations (n = 150 cases, n = 7466 controls). 

Participants contributed an observation to the dataset for each year the inclusion criteria 

were met. Sampling was on the observation level rather than the participant level to mirror 

the distribution of medical history length in the source population.

Each observation contained information on 134 covariates capturing demographic 

information (12 variables), medical utilization measures, number of ordered tests for various 

sexually transmitted diseases in the past 1 and 2 years (70 variables), and ever number of 

positive or abnormal tests, prescriptions for selected drugs, diagnoses of selected medical 

conditions and treatments (52 variables) (Table 1). Based on clinical expertise and 

familiarity with data capture at Atrius, 180 covariates were initially considered for inclusion. 

Forty six of those were subsequently dropped due to lack of variation in the data, or to 

collinearity. These 46 variables could provide no additional predictive ability. We removed 

them from the analytic dataset to facilitate convergence and speed up computation time. We 

also defined two interaction terms, sex-nongonococcal urethritis and sex-suboxone 
prescription. Including all 134 covariates in a logistic regression model would lead to 

overfitting the data, since there are only 150 cases. Following tradition in the nonautomated 

development of risk prediction models,35 we relied on clinical judgement augmented with 

empirical correlations in the data to identify 23 potential strong predictors among the listed 

covariates (Table 2).36–38 We wanted each algorithm to have the benefit of developing a 

model based on all covariates, and also based on an expert-selected subset of covariates. 

Providing too many covariates can sometimes result in overfitting the data, even when 

learners perform their own internal regularization. At the outset, we did not know which 

approach would obtain better results, so we tried both.

3.2 | Model development

All SL analyses relied on 10-fold cross-validation to empirically evaluate the loss function 

ℒ = 1 − AUC, using the R SuperLearner package.22,39 Observations on the same patient 

were assigned to the same cross-validation fold. The ensemble SL library consisted of 42 

machine learning algorithms that are variants of the class of algorithms described in the 

previous section of the article. Algorithms in the SL library were presented with all 
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covariates or with only the 23 pre-selected covariates, as shown in Table 3. The latter 

focuses the search on what we suspect is the most fruitful area of the solution space, while 

the former forces each algorithm to rely on information in the data themselves.

The SL package ordinarily calculates the optimal weighted combination and returns the 

results. However, because we used different ratios of cases to controls for different 

algorithms in the library, the raw predictions available internally to SL are not all on the 

same scale. We evaluated the ensemble SL predictions ourselves. The first step was to use 

the prior correction method to rescale SL’s matrix of cross validated predictions, Z. We 

invoked method.AUC, defined in the SL package, to calculate the weights that minimize the 

loss, based on calibrated matrix, Z′. This method normalizes the weights, to ensure that the 

predicted probabilities are a convex combination of predictions from algorithms fit on all the 

data. SL risk predictions were calculated as the weighted sum of the rescaled predictions 

from each of the 42 algorithms fit on the entire dataset. The SL package returns the unscaled 

predictions in a matrix labeled library.predict. If we denote the matrix of calibrated 

predictions as library.predict′, then our ensemble SL predictions are set equal the weighted 

sum of predicted probabilities in library.predict′.

3.3 | Cross validating the super learner

In a final step, we used 10-fold cross-validation to obtain an honest estimate of the cv-AUC 

of the ensemble SL. We use dSL to identify the best performing candidate algorithm. Our 

dSL library contains 43 candidates—the 42 original algorithms, plus the ensemble SL itself. 

Because cross-validated loss penalizes overfits, dSL allows us to rank candidates by their 

ability to discriminate between cases and controls on novel data drawn from the same 

distribution.

3.4 | Results

We present and discuss results in terms of maximizing the AUC, which is equivalent to 

minimizing the loss function, ℒ = 1 − AUC. We calculated AUC with respect to the general 

Atrius population where the model will be applied, rather than the sub-population who have 

at least one recorded risk factor. We are not interested in flagging any patients who have no 

recorded risk factors (n=755,579), because their EHR provides no justification for 

considering them to be at high risk. We assigned risk = 0 to these patients, and included 

them in the AUC calculation. 95% confidence intervals were calculated by incorporating 

weights into the influence curve-based method of Ledell et al.40

Although ensemble SL was among the top performing algorithms (cv-AUC (95% CI) = 

0.836, (0.822, 0.851)), several variants of lasso and ridge regression had slightly higher cv-

AUCs. The best lasso model (cv-AUC (95% CI) = 0.858 (0.842, 0.874)) was fit on a dataset 

containing all 134 covariates, and a 1:20 class ratio (Table 4). Overlapping confidence 

intervals indicate that there is little practical difference in performance between SL and the 

more interpretable lasso model. All variants of lasso and ridge regression out-performed 

SVM, neural nets, and logistic regression modeling using stepwise backward selection or an 

a priori specified model. The choice of deviance-based or AUC-based loss for ridge and 
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lasso had little impact. AUC curves for the best variant of each candidate algorithm in the 

SL library are shown in Figure 1.

The best maximum likelihood logistic regression-based algorithm we investigated was the a 

priori specified model containing the pre-selected set of covariates, fit on unweighted data 

having a 1:10 class ratio, with probabilities re-scaled using the prior correction method. This 

algorithm was slightly less able to discriminate between high and low risk patients (cv-AUC 

= 0.814 (0.796, 0.830)) than the penalized regression algorithms. When coefficients in the 

model were fit on the same data using weighted logistic regression instead of the prior 

correction method, the cv-AUC (0.799 (0.782, 0.815)) fell slightly.

Random forest, ridge regression, and lasso perform their own variable selection or 

shrinkage. Granting these algorithms access to all 134 covariates improved performance 

over allowing them access to only the 23 pre-selected covariates.

4 | OPTIONALLY AUGMENTING THE SUPER LEARNER LIBRARY

Although it will never be possible to do an exhaustive search over the entire solution space, 

we tried to see whether we could meaningfully improve SL’s predictive performance by 

augmenting the SL library. We explored 18 variants of gradient boosting, and revised 

specifications for nine neural networks. Observations were assigned to the same cross 

validation folds as in the prior analysis so that the cross validated loss estimates would be 

comparable.

4.1 | Gradient boosting

It is an ensemble of weak learning trees that often out-performs random forest in 

classification tasks.41,42 We were interested in finding out whether this approach could 

extract more meaningful information from our data. Each tree is constructed in response to 

the residual error from the previous tree in the sequence. We defined six variants of gradient 

boosting that varied the parameters that most affected stability in our simulations using the 

xgboost package.43 The maximum tree depth was set to either 2 or 4, and the minimum 

number of observations per node was set to either 10, 25, or 50. We applied these six 

algorithms to datasets with a case to control ratio of 1:50, 1:20, and 1:10, for a total of 18 

variants.

4.2 | Neural Network

Its performance was poor in our first set of results. We investigated whether reducing the 

size of the network could improve performance. We began by omitting 74 covariates that 

were likely to be uninformative, populated almost entirely with zeros (>= 99%). We 

specified three different architectures: a single hidden layer containing either 1, 2, or 5 

nodes. These three algorithms were applied to datasets with a case to control ratio of 1:50, 

1:20, and 1:10, for a total of nine variants. This time we used a different R package, the 

neuralnet package.44
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4.3 | Results

Estimated cv-AUCs were obtained using the same assignment of observations to cross-

validation folds as in the original analysis. All boosted trees had good performance (Table 

5). The best cv-AUC of 0.844 was obtained from a dataset with a 1:10 class ratio, with 

maximum depth set to 2 and a minimum of 10 observations per node. Neural net 

performance improved considerably (Table 5). The highest cv-AUC (0.787) was obtained 

from a dataset with a 1:20 class ratio and 1 node in the hidden layer. Alternative architecture 

specifications might further improve performance.

Although these results were encouraging, their cv-AUCs are on a par with those of the 

original individual algorithms. The only remaining question is whether an ensemble of all 69 

algorithms (42 original plus 27 new variants) offers a meaningful improvement. The weights 

were calculated to minimize the cv-AUC, as described earlier. Instead of relying on 10-fold 

cross validation, we evaluated the loss on an external validation set. The dataset contained 

information on patients with at least one risk factor seen in Atrius in 2016 (n = 245,475, 16 

of whom were cases).3 Two percent of these 2016 patients were also in the 2007–2015 

dataset used to fit the model, albeit with different values of time-dependent covariates. This 

small correlation may cause AUCs to be slightly optimistic. However, it provides a 

reasonable platform for comparing AUCs of the augmented ensemble SL, the original 

ensemble SL, and each of the 69 individual algorithms (Table 6). Variants of ridge and lasso 

had the highest AUC (0.91), confirming the original results. XGBoost was an improvement 

over random forest (AUC = 0.90 vs 0.66). SL using the augmented library was better than 

SL on the original library (AUC = 0.88 vs 0.80). However, many algorithms were superior to 

both.

5 | DISCUSSION

This project was motivated by a compelling public health need to increase PrEP uptake in 

vulnerable populations. It demonstrated that information routinely captured in the EHR can 

play an important role in automated identification of high risk patients. Choosing a risk 

score threshold to identify patients who should be further evaluated as PrEP candidates 

involves trading off sensitivity and specificity. This trade-off should take into acount the 

relative costs of false positives and false negatives, and the availability of local resources to 

act on the information (see Reference 3).

The target statistical parameter was defined as a function of covariate history that could be 

applied regardless of the actual length of the medical history. We knew that many of the 

strong behavioral predictors of HIV risk are not well captured in the EHR. However, we 

hoped there might be predictive power in variables that are present in the data. We initially 

created a rich set of covariates that defined a high-dimensional model space. We did not 

know if it, or any subset of the model space, would have sufficient predictive power.

Using SL allowed us to investigate a diverse set of parametric and machine learning 

approaches to developing a risk prediction model. This work adds to the body of literature 

demonstrating that instead of trying to anticipate what will work best for analyzing a given 

dataset, an analyst can instead use SL to investigate many options simultaneously. Cross 
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validation (discrete SL) allowed us to identify the best performing algorithm among the 71 

candidates in a principled manner (42 original algorithms, 27 supplemental algorithms, an 

ensemble SLs with either 42 or 69 algorithms in the library).

We strove to develop a model with good predictive power that could be easily integrated into 

the EHR system. A low-dimensional model with good performance characteristics emerged. 

Because lasso turned out to be the top performing algorithm, we were able to write down a 

simple logistic regression model for EHRs programmers to implement, and clinicians to 

assess. We expect this will facilitate adoption of the model and its recommendations in 

practice. The lasso model is easy to implement and to update, even in small clinics and 

public health departments in resource-poor areas of the United Sates. We also wanted to be 

able to compare the performance of sophisticated methods with what might traditionally be 

done in practice, that is, concerned clinicians using their expertise to select covariates and 

limited interaction terms for a logistic regression model, then estimating the coefficients 

from data. For these reasons, we included logistic regression in our SL library. While it did 

well, more data-adaptive methods were better able to exploit the available information in the 

data. The distinctions between variants of each library algorithm were often small, but 

sometimes offered large gains in cv-AUC. Since ensemble SL did not outperform every 

other candidate, we were spared having to weigh pros and cons of trading off transparency 

and familiarity with predictive performance.

We found that increasing the balance between cases and controls improved predictive 

performance of some algorithms, but not others. The ideal class ratio depended on the 

information content of the data and characteristics of the prediction algorithm. We found it 

helpful to examine each algorithm’s behavior using simulated data that mimicked salient 

characteristics of the real world data. This improved our understanding of how different 

algorithms performed at different ratios of cases to controls when the proportion of outcome 

events was on the order of 10−4. We saw that random forest performed much better when 

presented with a more balanced class ratio than the 1:50 ratio in our original dataset. Internal 

calculations rely on subsets of the observations that are uninformative if they contain only 

cases or only controls. Large imbalances will delay convergence. Weighted glm, a maximum 

likelihood-based algorithm, performed better when more observations were available, even 

though the imbalance was greater. Promising variants of each of these algorithms were 

included in our SL library.

An alternate strategy for improving class balance is to oversample the less prevalent class. 

Another option is the synthetic minority over-sampling technique (SMOTE) that creates 

synthetic cases with covariate profiles similar to observations already in the data.45 While 

oversampling is often recommended in the literature, some research has shown that cross-

validated loss calculations can be overly optimistic when the minority class is oversampled, 

and that undersampling can sometimes better address class imbalance.46,47 We chose to 

undersample rather then oversample because the computational resources needed to analyze 

the much larger dataset produced by retaining all controls and an appropriate fraction of 

resampled cases would have forced us to reduce the size of the SL library.
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Although the rarity of the outcome suggested that overfitting could be a concern, we also 

knew that many of the strong behavioral predictors of HIV risk are not well captured in the 

EHR. We initially created a rich set of covariates that defined a high-dimensional model 

space. At the outset, we did not know if it, or any subset of the model space, would have 

sufficient predictive power. However, we were pleased to see that a low-dimensional model 

with good performance characteristics emerged.

It was not clear at the outset whether the machine learning algorithms would perform better 

when given access to the entire set of covariates or when restricted to the smaller expert-

selected covariate set. We found that the answer depends on the nature of the candidate 

algorithm. Algorithms that themselves select covariates or shrink coefficients (lasso, ridge, 

random forest) performed better when provided with the full set of covariates. Logistic 

regression modeling was improved by relying on the pre-selected subset.

A limitation of our approach is that both our original and augmented SL libraries may have 

excluded a better-performing algorithm. We tried to include a rich set of algorithms that 

could feasibly be investigated. Our primary focus was on mitigating the impact of class 

imbalance without losing the diversity in the distribution of covariates in the large number of 

available controls. We saw that boosted trees had better discriminatory ability than random 

forest. Performance approached that of lasso and ridge regression modeling.

The library specification problem is one that analysts have to grapple with every time they 

use SL. SL enables the analyst to try variants of machine learning algorithms without 

requiring deep expertise in all of them. When possible, we recommend experimenting on 

simulated data to develop an understanding of which tuning parameters most impact 

performance, and then including that algorithm in the SL library several times, with different 

settings of influential tuning parameters, rather than omitting the algorithm entirely. In our 

project, SVM and neural network performance might have further improved with other 

choices of tuning parameters.

There may also be limitations to re-scaling on the logit scale when using the prior correction 

method. For example, why not the probit scale? These two distributions differ most in the 

tails. In this application the predicted probability values were quite low, so the choice might 

affect predictive accuracy. This remains an area of future work, as does improving our 

understanding of when weighting is preferable to re-scaling.

We previously studied the generalizability of the fitted model.3 The model we developed 

using data specific to the historical Atrius-based patient mix and standards of care had 

exceptional performance when applied to Atrius data collected in 2016, but performed less 

well when applied to data collected 2011–2016 by Fenway Health, an independent 

community health center specializing in healthcare for sexual and gender minorities. (n = 

33,404, 423 cases, AUC = 0.77). This suggests that the model fails to generalize to care 

settings where covariate-risk associations differ. Predictive accuracy could also change as 

standard medical practice evolves over time. Even when the model fails to generalize to 

other patient populations, the approach itself is transferrable. A site-specific risk prediction 

model could easily be developed by following the steps outlined in this article.
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FIGURE 1. 
Cross-validated area under the receiver-operating curve for ensemble SL, and the best 

performing variant of each candidate algorithm in the super learner library
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TABLE 1

Hundred and thirty-four covariates retained in the analytic dataset

X(0) : Baseline demographics
age, sex,race (6 indicators), language (4 indicators)

X(t) : Health care utilization during past 1 year and past 2 years

number of medical encounters, top quartile usage (yes/no), EHR data recorded, HIV counseling

Number of tests and number of positive tests in past 1 year and past 2 years

gonorrhea, chlamydia, syphilis, hepatitis B antibody, hepatitis B DNA, hepatitis C antibody, hepatitis C RNA, HIV ELISA test, HIV 
RNA test

Diagnoses in past 1 year, 2 years (yes/no)

syphilis, nongonococcal urethritis, herpes, anogenital warts, anorectal ulcer, pelvic inflammatory disease, venereal disease, anorexia, 
bulimia, eating disorder, alcohol dependence, opioid dependence, drug dependence, gonorrhea, chlamydia, syphilis, herpes, substance 
abuse

Prescriptions in past 1 and/or 2 years

bicillin, azithromycin, ceftriaxone, methadone, suboxone, cialis/viagra/levitra

Z(t) : Indicators of ever diagnosed for each condition listed above

Indicators of ever prescribed for each drug listed above

high risk sexual behavior, possible transgender, possible homosexual, possible transgender, possible injectable drug use, possible at 
risk woman, years of available data
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TABLE 2

Twenty-three pre-selected covariates

X(0) : sex; race asian; race black; race white; english language (y/n)

X(t) : number of hepatitis C antibody tests in the past year; over the past two years: mean number of HIV tests; HIV counseling; number of 
tests for gonorrhea; prescription for suboxone; sex-suboxone; chlamydia test diagnosis and treatment; possible at risk woman; possible 
male sex with male

Z(t) : total number of recorded HIV RNA tests; positive gonorrhea tests; diagnosis of syphilis; diagnosis of nongonococcal urethritis; sex-
nongonococcal urethritis; diagnosis of bulimia; sex-diagnosis of bulimia; exposed to a venereal disease; engaged in high risk sexual 
behaviors
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TABLE 3

Candidate algorithms included in the ensemble Super Learner library

Prediction Algorithm (approximate) Controls per Case Eligible Covariates Notes

Logistic Regression 50, 20, or 10 All Weighted

(14 variants) 50, 20, or 10 Pre-Selected Weighted

50, 20, or 10 All

50, 20, or 10 Pre-selected

50 All Backward selection

50 Pre-Selected Backward selection

Lasso 20 or 10 All Deviance loss

(8 variants) 20 or 10 All neg AUC loss

20 or 10 Pre-Selected Deviance loss

20 or 10 Pre-Selected neg AUC loss

Ridge Regression 20 or 10 All Deviance loss

(8 variants) 20 or 10 All neg AUC loss

20 or 10 Pre-Selected Deviance loss

20 or 10 Pre-Selected neg AUC loss

Random Forest 50, 20, or 10 All 10,000 trees, 1/3 of covariates sampled per split

(6 variants) 50, 20, or 10 Pre-Selected 10,000 trees, 1/3 of covariates sampled per split

Support Vector Machine 50 All Tuning parameters chosen by cross validation

(2 variants) 50 Pre-Selected Tuning parameters chosen by cross validation

Neural Network 20 or 10 Pre-Selected 10 nodes in 1hidden layer

(4 variants) 20 or 10 Pre-Selected 5 nodes in 1 hidden layer

Note: Risk scores were re-scaled to account for undersampling of controls, except for weighted logistic regression algorithms.
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TABLE 4

Cross-validated area under the receiver-operating curve and 95% confidence interval (CI) for ensemble SL and 

each of the 42 algorithms in the original super learner library.

Algorithm cv-AUC (CI) Algorithm cv-AUC (CI)

lasso20,dev 0.858 (0.842, 0.874) rForest10 0.795 (0.778, 0.811)

lasso20,auc 0.855 (0.839, 0.870) rForest20 0.772 (0.756, 0.788)

lasso10,auc 0.853 (0.836, 0.868) glm50,pre 0.758 (0.743, 0.773)

lasso10,dev 0.849 (0.833, 0.865) svm50,pre 0.746 (0.731, 0.760)

ridge20,dev 0.839 (0.824, 0.854) glmStep50 0.743 (0.729, 0.758)

ridge10,dev 0.839 (0.823, 0.854) glm50,wt 0.742 (0.728, 0.757)

SL 0.836 (0.822, 0.851)

ridge10,auc 0.836 (0.821, 0.851) glm20,pre 0.742 (0.728, 0.757)

ridge20,auc 0.831 (0.816, 0.846) glmStep50,pre 0.737 (0.723, 0.751)

lasso10,pre,auc 0.828 (0.812, 0.845) glm10 0.736 (0.721, 0.751)

lasso10,pre,dev 0.826 (0.810, 0.842) glm50 0.707 (0.693, 0.722)

lasso20,pre,dev 0.821 (0.805, 0.837) rForest50 0.679 (0.666, 0.693)

lasso20,pre,auc 0.821 (0.805, 0.837) glm20,wt 0.651 (0.638, 0.664)

lasso20,pre,dev 0.818 (0.801, 0.834) rForest20,pre 0.594 (0.587, 0.601)

glm10,pre 0.814 (0.796, 0.830) rForest10,pre 0.591 (0.584, 0.598)

ridge10,pre,auc 0.812 (0.796, 0.827) rForest50,pre 0.588 (0.581, 0.596)

ridge10,pre,dev 0.811 (0.794, 0.826) glm10,wt 0.552 (0.540, 0.564)

ridge20,pre,auc 0.809 (0.793, 0.825) nnet10,5h,pre 0.5 (0.490, 0.510)

glm20 0.807 (0.790, 0.823) nnet10,10h,pre 0.5 (0.490, 0.510)

glm50,pre,wt 0.805 (0.789, 0.821) nnet20,5h,pre 0.5 (0.490, 0.510)

glm20,pre,wt 0.802 (0.785, 0.817) nnet20,10h,pre 0.5 (0.490, 0.510)

glm10,pre,wt 0.799 (0.782, 0.815) svm50 0.424 (0.399, 0.449)

Subscript key: (50, 20,10): # controls per case, pre: 23 pre-selected covariates, auc: neg AUC loss.

dev: deviance loss, wt: weighted regression, 5h, 10h: # nodes in hidden layer.

95% confidence intervals calculated using method of LeDell et al (2015).

Stat Med. Author manuscript; available in PMC 2020 November 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gruber et al. Page 22

TABLE 5

Cross-validated area under the receiver-operating curve and 95% confidence interval (CI) for gradient boosted 

(xgb) and neural network (nn) algorithms in the augmented super learner library

Algorithm cv-AUC (CI) Algorithm cv-AUC (CI) Algorithm cv-AUC (CI)

xgb10,2,10 0.844 (0.828, 0.859) xgb20,2,25 0.836 (0.819, 0.853) nn20,1 0.787 (0.772, 0.802)

xgb50,4,50 0.842 (0.823, 0.861) xgb20,4,50 0.834 (0.816, 0.852) nn10,1 0.773 (0.758, 0.788)

xgb50,2,25 0.839 (0.823, 0.856) xgb50,4,25 0.832 (0.814, 0.849) nn10,2 0.773 (0.758, 0.787)

xgb20,2,10 0.839 (0.823, 0.855) xgb20,2,50 0.832 (0.815, 0.848) nn20,5 0.733 (0.717, 0.749)

xgb10,4,25 0.838 (0.821, 0.855) xgb50,2,10 0.831 (0.815, 0.847) nn50,5 0.711 (0.693, 0.729)

xgb50,2,50 0.837 (0.819, 0.856) xgb10,2,50 0.831 (0.813, 0.848) nn50,1 0.708 (0.693, 0.724)

xgb10,4,50 0.837 (0.820, 0.854) xgb20,4,10 0.819 (0.803, 0.836) nn50,2 0.5 (0.490, 0.510)

xgb20,4,25 0.837 (0.819, 0.854) xgb10,4,10 0.816 (0.800, 0.832) nn10,5 0.5 (0.490, 0.510)

xgb10,2,25 0.836 (0.819, 0.853) xgb50,4,10 0.799 (0.782, 0.815) nn20,2 0.5 (0.490, 0.510)

xgb subscript key: (a, b, c): a = # controls per case, b=depth, c = min obs per node.

nn subscript key: (a, b): a = # controls per case, b= # nodes in hidden layer.

95% confidence intervals calculated using method of LeDell et al (2015).

Stat Med. Author manuscript; available in PMC 2020 November 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gruber et al. Page 23

TABLE 6

Cross-validated area under the receiver-operating curve (95% CI) for all algorithms based on Atrius 2016 data

Algorithm cv-AUC Algorithm cv-AUC Algorithm cv-AUC

ridge10,dev 0.915(0.884, 0.946) xgb50,4,25 0.862(0.824, 0.899) xgb20,4,10 0.805(0.762, 0.847)

ridge20,dev 0.909(0.877, 0.941) xgb20,2,10 0.858(0.820, 0.896) lasso20,pre,dev 0.803(0.761, 0.846)

lasso20,dev 0.905(0.873, 0.938) glmStep50 0.857(0.818, 0.895) lasso10,pre,dev 0.801(0.758, 0.844)

lasso20,auc 0.898(0.865, 0.932) nn50,5 0.855(0.817, 0.893) SL42 0.800(0.758, 0.843)

xgb20,4,50 0.895(0.861, 0.929) xgb10,2,10 0.855(0.816, 0.893) nn20,2 0.799(0.756, 0.841)

xgb20,2,50 0.895(0.861, 0.929) glm10,pre 0.848(0.809, 0.887) glm20,pre,wt 0.798(0.755, 0.841)

ridge20,auc 0.895(0.861, 0.929) glmStep50,pre 0.843(0.803, 0.882) lasso20,pre,auc 0.790(0.747, 0.834)

xgb50,2,50 0.893(0.859, 0.927) glm20 0.839(0.799, 0.879) svm50,pre 0.783(0.739, 0.827)

xgb50,4,50 0.893(0.859, 0.927) glm10,pre,wt 0.837(0.797, 0.877) glm20,wt 0.747(0.702, 0.793)

lasso10,dev 0.892(0.858, 0.926) glm50,pre,wt 0.836(0.796, 0.876) glm10 0.739(0.693, 0.785)

xgb10,2,50 0.890(0.856, 0.925) glm50,pre 0.834(0.794, 0.875) xgb10,4,10 0.735(0.689, 0.781)

lasso10,auc 0.890(0.856, 0.924) SL.xgboost 0.825(0.784, 0.866) glm20,pre 0.692(0.644, 0.739)

xgb10,4,50 0.890(0.855, 0.924) ridge20,pre,auc 0.823(0.782, 0.864) svm50 0.680(0.632, 0.728)

ridge10,auc 0.888(0.853, 0.922) ridge10,pre,auc 0.819(0.777, 0.860) rForest10 0.664(0.616, 0.712)

xgb50,2,25 0.882(0.847, 0.917) nn10,2 0.819(0.777, 0.860) rForest20 0.657(0.609, 0.706)

xgb20,2,25 0.880(0.845, 0.916) glm50 0.818(0.777, 0.860) rForest20,pre 0.643(0.594, 0.691)

xgb10,4,25 0.878(0.842, 0.914) nn10,1 0.817(0.776, 0.859) rForest10,pre 0.626(0.578, 0.674)

SL69 0.876(0.839, 0.912) nn20,5 0.817(0.776, 0.859) rForest50 0.569(0.521, 0.617)

nn50,2 0.873(0.836, 0.909) nn20,1 0.817(0.775, 0.858) rForest50,pre 0.569(0.520, 0.617)

xgb20,4,25 0.870(0.833, 0.907) lasso10,pre,auc 0.816(0.775, 0.858) glm10,wt 0.515(0.468, 0.562)

xgb50,2,10 0.867(0.830, 0.904) ridge20,pre,dev 0.815(0.773, 0.856) nnet10,5h,pre 0.500(0.453, 0.547)

nn50,1 0.864(0.827, 0.902) glm50,wt 0.812(0.770, 0.854) nnet10,10h,pre 0.500(0.453, 0.547)

xgb10,2,25 0.862(0.825, 0.900) nn10,5 0.810(0.768, 0.852) nnet20,5h,pre 0.500(0.453, 0.547)

ridge10,pre,dev 0.808(0.766, 0.850) nnet20,10h,pre 0.500(0.453, 0.547)

Subscript key: (50, 20,10): # controls per case, pre: 23 pre-selected covariates, auc: neg AUC loss.

dev: deviance loss, wt: weighted regression, 5h, 10h: # nodes in hidden layer.

xgb subscript key: (a, b, c): a = # controls per case, b=depth, c = min obs per node.

nn subscript key: (a, b): a = # controls per case, b= # nodes in hidden layer.

95% confidence interval method calculated using Hanley’s method.48 Method of LeDell et al (2015) is not applicable to single external validation 
set.
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